Parameterized Quantum Circuit
A quantum circuit with adjustable parameters, similar to a neural network layer.
A Parameterized Quantum Circuit (PQC), also called a quantum circuit ansatz or variational circuit, is a quantum circuit whose gates depend on tunable parameters.
Structure
Each layer contains:
- Fixed entangling gates (e.g., CNOT)
- Parameterized rotation gates (e.g., , )
Example Circuit
θ₁ θ₂ θ₃
|0⟩ ──Ry(θ₁)──●──Ry(θ₃)──●──
│ │
|0⟩ ──Ry(θ₂)──⊕──Ry(θ₄)──⊕──
Parameters are optimized.
Common Building Blocks
Rotation Gates
Entangling Layers
- CNOT ladders
- CZ layers
- All-to-all connectivity
Ansatz Types
| Type | Description | Use Case |
|---|---|---|
| Hardware-efficient | Native gates, easy to run | General |
| Heuristic | Alternating rotation + entangle | NISQ |
| Problem-specific | Encodes problem structure | Chemistry, optimization |
| UCCSD | Coupled cluster inspired | Quantum chemistry |
Training PQCs
Like neural networks, PQCs are trained by:
- Forward pass: Run circuit, measure expectation
- Compute cost: Compare to target
- Backward pass: Estimate gradients
- Update: Adjust parameters
Gradient Methods
Parameter shift rule:
Requires two circuit evaluations per parameter.
Expressibility
How much of Hilbert space can the PQC reach?
| More Expressive | Less Expressive |
|---|---|
| Can represent more states | Simpler optimization |
| More parameters | Fewer parameters |
| Deeper circuits | Shallower circuits |
| More barren plateaus | Easier training |
Trade-off between expressibility and trainability.
Applications
- VQE: Ansatz for molecular wave functions
- QAOA: Alternating problem/mixer layers
- QML: Feature maps and variational classifiers
Comparison to Neural Networks
| Aspect | PQC | Neural Network |
|---|---|---|
| Building blocks | Quantum gates | Linear + nonlinear |
| State space | Hilbert space | Real vectors |
| Gradients | Parameter shift | Backpropagation |
| Training | Similar challenges | Mature field |
See also: Variational Quantum Algorithm, Quantum Machine Learning