Parameterized Quantum Circuit

A quantum circuit with adjustable parameters, similar to a neural network layer.


A Parameterized Quantum Circuit (PQC), also called a quantum circuit ansatz or variational circuit, is a quantum circuit whose gates depend on tunable parameters.

Structure

Each layer contains:

  • Fixed entangling gates (e.g., CNOT)
  • Parameterized rotation gates (e.g., , )

Example Circuit

         θ₁      θ₂      θ₃
|0⟩ ──Ry(θ₁)──●──Ry(θ₃)──●──
              │          │
|0⟩ ──Ry(θ₂)──⊕──Ry(θ₄)──⊕──

Parameters are optimized.

Common Building Blocks

Rotation Gates

Entangling Layers

  • CNOT ladders
  • CZ layers
  • All-to-all connectivity

Ansatz Types

TypeDescriptionUse Case
Hardware-efficientNative gates, easy to runGeneral
HeuristicAlternating rotation + entangleNISQ
Problem-specificEncodes problem structureChemistry, optimization
UCCSDCoupled cluster inspiredQuantum chemistry

Training PQCs

Like neural networks, PQCs are trained by:

  1. Forward pass: Run circuit, measure expectation
  2. Compute cost: Compare to target
  3. Backward pass: Estimate gradients
  4. Update: Adjust parameters

Gradient Methods

Parameter shift rule:

Requires two circuit evaluations per parameter.

Expressibility

How much of Hilbert space can the PQC reach?

More ExpressiveLess Expressive
Can represent more statesSimpler optimization
More parametersFewer parameters
Deeper circuitsShallower circuits
More barren plateausEasier training

Trade-off between expressibility and trainability.

Applications

  • VQE: Ansatz for molecular wave functions
  • QAOA: Alternating problem/mixer layers
  • QML: Feature maps and variational classifiers

Comparison to Neural Networks

AspectPQCNeural Network
Building blocksQuantum gatesLinear + nonlinear
State spaceHilbert spaceReal vectors
GradientsParameter shiftBackpropagation
TrainingSimilar challengesMature field

See also: Variational Quantum Algorithm, Quantum Machine Learning