VQE
Variational Quantum Eigensolver: a hybrid quantum-classical algorithm for finding ground state energies, especially useful in quantum chemistry.
VQE (Variational Quantum Eigensolver) is the flagship algorithm for near-term quantum computers. It’s a hybrid approach that uses a quantum computer to evaluate energies and a classical computer to optimize parameters.
The Goal
Find the ground state energy of a Hamiltonian :
This is important for quantum chemistry (molecular ground states) and materials science.
How It Works
The Variational Principle
For any trial state :
The energy of any guess is always ≥ true ground state energy. So minimize!
The Algorithm
┌─────────────────────────────────────────────────────┐
│ Classical Computer │
│ ┌─────────────┐ ┌────────────┐ │
│ │ Optimizer │◄──── Energy ◄─────│ Measure │ │
│ │ (θ→θ') │ │ expectation│ │
│ └──────┬──────┘ └─────▲──────┘ │
│ │ New θ │ │
│ ▼ │ │
│ ┌──────────────────────────────────────────────┐ │
│ │ Quantum Computer │ │
│ │ │ │
│ │ |0⟩ ──[Ansatz(θ)]──── Measure │ │
│ │ │ │
│ └──────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────┘
- Prepare: Create parameterized trial state on quantum computer
- Measure: Estimate via measurements
- Optimize: Classical optimizer updates to minimize energy
- Repeat: Until convergence
The Ansatz
The ansatz is the parameterized circuit structure:
|0⟩ ──Ry(θ₁)──●──Ry(θ₃)──...
│
|0⟩ ──Ry(θ₂)──⊕──Ry(θ₄)──...
Common ansatzes:
- UCCSD: Unitary coupled cluster (chemistry-inspired)
- Hardware-efficient: Native gates, easy to run
- Problem-specific: Tailored to symmetries
Measuring the Hamiltonian
Hamiltonians are decomposed into Pauli strings:
where are Pauli operators (e.g., ).
Each term measured separately, results combined classically.
Challenges
| Challenge | Issue |
|---|---|
| Barren plateaus | Gradients vanish in deep circuits |
| Noise | NISQ devices have errors |
| Measurement overhead | Many shots needed for precision |
| Classical optimization | Can get stuck in local minima |
Applications
- Quantum chemistry: Molecular energies, reaction pathways
- Materials science: Band structures, superconductivity
- Optimization: Via encoding problems as Hamiltonians
Relation to Other Algorithms
- QPE: More accurate but needs fault tolerance
- QAOA: Similar variational structure, for optimization
- VQA: VQE is a specific type of variational quantum algorithm
See also: Variational Quantum Algorithm, QAOA, Hamiltonian, NISQ