VQE

Variational Quantum Eigensolver: a hybrid quantum-classical algorithm for finding ground state energies, especially useful in quantum chemistry.


VQE (Variational Quantum Eigensolver) is the flagship algorithm for near-term quantum computers. It’s a hybrid approach that uses a quantum computer to evaluate energies and a classical computer to optimize parameters.

The Goal

Find the ground state energy of a Hamiltonian :

This is important for quantum chemistry (molecular ground states) and materials science.

How It Works

The Variational Principle

For any trial state :

The energy of any guess is always ≥ true ground state energy. So minimize!

The Algorithm

┌─────────────────────────────────────────────────────┐
│                  Classical Computer                  │
│  ┌─────────────┐                    ┌────────────┐  │
│  │  Optimizer  │◄──── Energy ◄─────│   Measure  │  │
│  │   (θ→θ')    │                    │ expectation│  │
│  └──────┬──────┘                    └─────▲──────┘  │
│         │ New θ                           │         │
│         ▼                                 │         │
│  ┌──────────────────────────────────────────────┐  │
│  │              Quantum Computer                 │  │
│  │                                               │  │
│  │  |0⟩ ──[Ansatz(θ)]──── Measure               │  │
│  │                                               │  │
│  └──────────────────────────────────────────────┘  │
└─────────────────────────────────────────────────────┘
  1. Prepare: Create parameterized trial state on quantum computer
  2. Measure: Estimate via measurements
  3. Optimize: Classical optimizer updates to minimize energy
  4. Repeat: Until convergence

The Ansatz

The ansatz is the parameterized circuit structure:

|0⟩ ──Ry(θ₁)──●──Ry(θ₃)──...
              │
|0⟩ ──Ry(θ₂)──⊕──Ry(θ₄)──...

Common ansatzes:

  • UCCSD: Unitary coupled cluster (chemistry-inspired)
  • Hardware-efficient: Native gates, easy to run
  • Problem-specific: Tailored to symmetries

Measuring the Hamiltonian

Hamiltonians are decomposed into Pauli strings:

where are Pauli operators (e.g., ).

Each term measured separately, results combined classically.

Challenges

ChallengeIssue
Barren plateausGradients vanish in deep circuits
NoiseNISQ devices have errors
Measurement overheadMany shots needed for precision
Classical optimizationCan get stuck in local minima

Applications

  • Quantum chemistry: Molecular energies, reaction pathways
  • Materials science: Band structures, superconductivity
  • Optimization: Via encoding problems as Hamiltonians

Relation to Other Algorithms

  • QPE: More accurate but needs fault tolerance
  • QAOA: Similar variational structure, for optimization
  • VQA: VQE is a specific type of variational quantum algorithm

See also: Variational Quantum Algorithm, QAOA, Hamiltonian, NISQ